skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Eppstein, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Strict outerconfluent drawing is a style of graph drawing in which vertices are drawn on the boundary of a disk, adjacencies are indicated by the existence of smooth curves through a system of tracks within the disk, and no two adjacent vertices are connected by more than one of these smooth tracks. We investigate graph width parameters on the graphs that have drawings in this style. We prove that the clique-width of these graphs is unbounded, but their twin-width is bounded. Comment: Final version for DMTCS; 17 pages, 2 figures 
    more » « less
    Free, publicly-accessible full text available December 5, 2025
  2. Felsner, Stefan; Klein, Karsten (Ed.)
    We study algorithms for drawing planar graphs and 1-planar graphs using cubic Bézier curves with bounded curvature. We show that any n-vertex 1-planar graph has a 1-planar RAC drawing using a single cubic Bézier curve per edge, and this drawing can be computed in O(n) time given a combinatorial 1-planar drawing. We also show that any n-vertex planar graph G can be drawn in O(n) time with a single cubic Bézier curve per edge, in an O(n)× O(n) bounding box, such that the edges have Θ(1/degree(v)) angular resolution, for each v ∈ G, and O(√n) curvature. 
    more » « less
  3. Abstract We show that, for planar point sets, the number of non-crossing Hamiltonian paths is polynomially bounded in the number of non-crossing paths, and the number of non-crossing Hamiltonian cycles (polygonalizations) is polynomially bounded in the number of surrounding cycles. As a consequence, we can list the non-crossing Hamiltonian paths or the polygonalizations, in time polynomial in the output size, by filtering the output of simple backtracking algorithms for non-crossing paths or surrounding cycles respectively. We do not assume that the points are in general position. To prove these results we relate the numbers of non-crossing structures to two easily-computed parameters of the point set: the minimum number of points whose removal results in a collinear set, and the number of points interior to the convex hull. These relations also lead to polynomial-time approximation algorithms for the numbers of structures of all four types, accurate to within a constant factor of the logarithm of these numbers. 
    more » « less
  4. The 2-blowup of a graph is obtained by replacing each vertex with two non-adjacent copies; a graph is biplanar if it is the union of two planar graphs. We disprove a conjecture of Gethner that 2-blowups of planar graphs are biplanar: iterated Kleetopes are counterexamples. Additionally, we construct biplanar drawings of 2-blowups of planar graphs whose duals have two-path induced path partitions, and drawings with split thickness two of 2-blowups of 3-chromatic planar graphs, and of graphs that can be decomposed into a Hamiltonian path and a dual Hamiltonian path. 
    more » « less
  5. Felsner, Stefan; Klein, Karsten (Ed.)
    Edge crossings in geometric graphs are sometimes undesirable as they could lead to unwanted situations such as collisions in motion planning and inconsistency in VLSI layout. Short geometric structures such as shortest perfect matchings, shortest spanning trees, shortest spanning paths, and shortest spanning cycles on a given point set are inherently noncrossing. However, the longest such structures need not be noncrossing. In fact, it is intuitive to expect many edge crossings in various geometric graphs that are longest. Recently, Álvarez-Rebollar, Cravioto-Lagos, Marín, Solé-Pi, and Urrutia (Graphs and Combinatorics, 2024) constructed a set of points for which the longest perfect matching is noncrossing. They raised several challenging questions in this direction. In particular, they asked whether the longest spanning path, on any finite set of points in the plane, must have a pair of crossing edges. They also conjectured that the longest spanning cycle must have a pair of crossing edges. In this paper, we give a negative answer to the question and also refute the conjecture. We present a framework for constructing arbitrarily large point sets for which the longest perfect matchings, the longest spanning paths, and the longest spanning cycles are noncrossing. 
    more » « less
  6. We study a class of functional problems reducible to computing $$f^{(n)}(x)$$for inputs $$n$$ and $$x$$, where $$f$$ is a polynomial-time bijection. As we prove,the definition is robust against variations in the type of reduction used inits definition, and in whether we require $$f$$ to have a polynomial-time inverseor to be computible by a reversible logic circuit. These problems arecharacterized by the complexity class $$\mathsf{FP}^{\mathsf{PSPACE}}$$, andinclude natural $$\mathsf{FP}^{\mathsf{PSPACE}}$$-complete problems in circuitcomplexity, cellular automata, graph algorithms, and the dynamical systemsdescribed by piecewise-linear transformations. 
    more » « less